django-security-logger Documentation
Release 1.4

Lubos Matl

Jan 25, 2023

Contents

1 Project Home 3
2 Documentation 5

2.1 Content v v o e e e e e e 5
Index 17

django-security-logger Documentation, Release 1.4

Django-security-logger is library for logging input, output request and Django commands. Library can be used with
django-reversion to log which data was changed in a request. The library provides throttling security mechanism.

Contents 1

django-security-logger Documentation, Release 1.4

2 Contents

CHAPTER 1

Project Home

https://github.com/druids/django-security

https://github.com/druids/django-security

django-security-logger Documentation, Release 1.4

4 Chapter 1. Project Home

CHAPTER 2

Documentation

https://django-security-logger.readthedocs.org/en/latest

2.1 Content

2.1.1 Installation
Using PIP

You can install django-security-logger via pip:

$ pip install django-security-logger

2.1.2 Configuration

After installation you must go through these steps:

Required Settings

The following variables have to be added to or edited in the project’s settings.py:

For using the library you just add security to INSTALLED_APPS variable:

INSTALLED_APPS = (
'security’',

)

Next you muse select which logging backend you want to use and add it into INSTALLED_APPS variable:

https://django-security-logger.readthedocs.org/en/latest

django-security-logger Documentation, Release 1.4

INSTALLED_APPS = (

'security.backends.sql', # log is stored into SQL DB with Django ORM

'security.backends.elasticsearch', # log is stored into Elasticsearch DB with_
—Elasticsearch-DSL

'security.backends.logging’', # standard python log

Next you must add security.middleware.LogMiddleware to list of middlewares, the middleware should be
added after authentication middleware:

MIDDLEWARE = (

'django.contrib.auth.middleware.AuthenticationMiddleware',
'security.middleware.LogMiddleware',

SQL backend

For SQL backend if your database configuration uses atomic requests, it’s highly recommended to use second non
atomic connection to your database for security logs. Possible rollback will not remove logs.

Example:

DATABASES = {

'default': {
'NAME': 'db_name',
'USER': 'db_user',
'"PASSWORD': 'db_password',
'HOST': 'postgres',
'"PORT': 5432,
'ENGINE': 'django.db.backends.postgresgl_psycopg2',

"ATOMIC_REQUESTS': True,
}I
'log': {
'NAME': 'db_name',
'USER': 'db_user',
'"PASSWORD': 'db_password',
'HOST': 'postgres',
'"PORT': 5432,
'ENGINE': 'django.db.backends.postgresgl_psycopg2',
'"ATOMIC_REQUESTS': False,
'"TEST': {
'MIRROR': 'default', # Test purposes
}I
}I

}
DATABASE_ROUTERS = ['security.backends.sgl.db_router.MirrorSecurityLoggerRouter'] #.,

—DB router which defines connection for logs
SECURITY_DB_NAME = 'log'

For test purposes you will need to configure both databases to be tested:

6 Chapter 2. Documentation

django-security-logger Documentation, Release 1.4

from django.test.testcases import TestCase

class YourTestCase (TestCase) :
databases = ('default', 'log'")

The second solution is have a independent database for logs in this case you can use
MultipleDBSecurityLoggerRouter:

DATABASES = {

'default': {
'"NAME': 'db_name',
'USER': 'db_user',
'"PASSWORD': 'db_password',
'"HOST': 'postgres',
'PORT': 5432,
'ENGINE': 'django.db.backends.postgresql_psycopg2',

'"ATOMIC_REQUESTS': True,
by

'log': {
'NAME': 'log_db_name',
'USER': 'log_db_user',
'"PASSWORD': 'log_db_password',
'"HOST': 'log_db_postgres',
'"PORT': 5432,
'ENGINE': 'django.db.backends.postgresql_psycopg2',

"ATOMIC_REQUESTS': False,
by
}

DATABASE_ROUTERS = ['security.backends.sqgl.dbr_router.MultipleDBSecurityLoggerRouter
"] # DB router which defines connection for 1logs
SECURITY_DB_NAME = 'log'

Elasticsearch backend

Elasticsearch backend can be configured via SECURITY_ELASTICSEARCH_DATABASE variable:

SECURITY_ELASTICSEARCH_DATABASE = {
'host': 'localhost',

For elasticsearch database initialization you must run . /manage.py init_elasticsearch_logcommand to
create indexes in the database.

There are two ways how to store logs in the elasticsearch: direct connection or via logstash. Direct connection is
defined by default and no extra configuration is not required. For the logstash solution you need to allow configuration
SECURITY_ELASTICSEARCH_LOGSTASH_WRITER:

SECURITY_ELASTICSEARCH_LOGSTASH_WRITER = True

Now you have to run logstash with configuration defined in logstash.example.conf.

Django will send data to the logstash via logger with this settings:

LOGGING.update ({
'handlers': {

(continues on next page)

2.1. Content 7

django-security-logger Documentation, Release 1.4

(continued from previous page)

'logstash': {
"level': 'INFO',
'class': 'security.backends.elasticsearch.logstash.handler_tcp.
—TCPLogstashHandler',
'host': 'logstash',
'port': 5044,
'formatter': 'logstash',
}V
}I
'loggers': {

'security.logstash': {
'handlers': ['logstash'],
'level': 'INFO',
'propagate’': False,

br

Testing backend

For testing purposes you can use ‘security.backends.testing’ and turn off log writers:

SECURITY_BACKEND_WRITERS = [] # Turn off log writers

Your test you can surround with security.backends.testing.capture_security_logs decorator/context processor:

def your_test():
with capture_security_logs() as logged_data:

assert_length_equal (logged_data.input_request, 1)
assert_length_equal (logged_data.output_request, 1)
assert_length_equal (logged_data.command, 1)

assert_length_equal (logged_data.celery_task_invocation, 1)
assert_length_equal (logged_data.celery_task_run, 1)
assert_equal (logged_data.input_request [0].request_body, 'test')

Readers

Some elasticsearch, sql and testing backends can be used as readers too. You can use these helpers to get
data from these backends (no matter which wan is set):

* security.backends.reader.get_count_input_requests (from_ time, ip=None,
path=None, view_slug=None, slug=None, method=None, exclude_log_id=None)
- to get count input requests with input arguments

* security.backends.reader.get_logs_related_with_object (logger_name,
related_object) - to get list of logs which are related with object

Setup

SECURITY_DEFAULT_THROTTLING_VALIDATORS_PATH
Path to the file with configuration of throttling validators. Default value is 'security.
default_validators'.

8 Chapter 2. Documentation

django-security-logger Documentation, Release 1.4

SECURITY_THROTTLING_FAILURE_VIEW
Path to the view that returns throttling failure. Default value is 'security.views.
throttling_failure_view'.

SECURITY_ LOG_REQUEST_IGNORE_URL_PATHS
Set of URL paths that are omitted from logging.

SECURITY_LOG_REQUEST IGNORE_IP
Tuple of IP addresses that are omitted from logging.

SECURITY_LOG_REQUEST_BODY_ LENGTH
Maximal length of logged request body. More chars than defined are truncated. Default value is 1000. If you
set None value the request body will not be truncated.

SECURITY_LOG_RESPONSE_BODY_ LENGTH
Maximal length of logged response body. More chars than defined are truncated. Default value is 1000. If you
set None value the response body will not be truncated.

SECURITY_LOG_RESPONSE_BODY_ CONTENT_TYPES
Tuple of content types which request/response body are logged for another content types body are removed.
Default value is ('application/json', 'application/xml', 'text/xml', 'text/csv',
"text/html', 'application/xhtml+xml').

SECURITY_LOG_JSON_STRING_LENGTH
If request/response body are in JSON format and body is longer than allowed the truncating is done with a
smarter way. String JSON values longer than value of this setting are truncated. Default value is 250. If you
set None value this method will not be used.

SECURITY COMMAND_LOG_EXCLUDED COMMANDS
Because logger supports Django command logging too this setting contains list of commands that are
omitted from logging. Default value is ('runserver', 'makemigrations', 'migrate',
'sglmigrate', 'showmigrations', 'shell', 'shell plus', 'test', 'help',
'reset_db', 'compilemessages', 'makemessages', 'dumpdata', 'loaddata').

SECURITY_ HIDE_SENSITIVE_DATA_ PATTERNS
Setting contains patterns for regex function that goes through body and headers and replaces sensitive data with
defined replacement.

SECURITY_ HIDE_SENSITIVE_DATA
If set to True enables replacing of sensitive data with defined replacement SECU-
RITY_HIDE_SENSITIVE_DATA_PATTERNS inside body and headers. Default value is True.

SECURITY_ SENSITIVE DATA REPLACEMENT
Setting contains sensitive data replacement value. Default value is ' [Filtered]'.

SECURITY_ APPEND_SLASH
Setting same as Django setting APPEND_SLASH. Default value is True.

SECURITY_CELERY_ STALE_TASK TIME_ LIMIT_MINUTES
Default wait timeout to set not triggered task to the failed state. Default value is 60.

SECURITY_LOG_OUTPUT_REQUESTS
Enable logging of output requests via logging module. Default value is True.

SECURITY_ AUTO_GENERATE_TASKS_FOR_DJANGO_COMMANDS
List or set of Django commands which will be automatically transformed into celery tasks.

SECURITY_LOG_DB_NAME
Name of the database which security uses to log events.

2.1. Content 9

django-security-logger Documentation, Release 1.4

SECURITY_BACKENDS
With this setting you can select which backends will be used to store logs. Default value is None which means
all installed backends are used.

SECURITY_ ELASTICSEARCH_ DATABASE
Setting can be used to set Elasticsearch database configuration.

SECURITY_ELASTICSEARCH_AUTO_REFRESH
Every write to the Elasticsearch database will automatically call auto refresh.

SECURITY_LOG_STRING_IO_FLUSH_TIMEOUT
Timeout which set how often will be stored output stream to the log. Default value is 5 (s).

SECURITY_LOG_STRING_OUTPUT_ TRUNCATE_LENGTH
Max length of log output string. Default value is 10000.

SECURITY_LOG_STRING_OUTPUT_ TRUNCATE_OFFSET
Because too frequent string truncation can cause high CPU load, log string is truncated by more characters. This
setting defines this value which is by default 1000.

2.1.3 Commands
purge_logs

Remove old request, command or celery logs that are older than defined value, parameters:

* expiration - timedelta from which logs will be removed. Units are h - hours, d - days, w - weeks, m -
months, y - years

e noinput - tells Django to NOT prompt the user for input of any kind
* backup - tells Django where to backup removed logs in JSON format

* type - tells Django what type of requests should be removed (input-request/output-request/command/celery-
task-invocation/celery-task-run)

Logs can be removed only for elasticsearch and sgl backends.

set_celery _task_log_state

Set celery tasks which are in WAITING state. Tasks which were not started more than
SECURITY_CELERY_STALE_TASK_TIME_LIMIT_MINUTES (by default 60 minutes) to the failed state.
Task with succeeded/failed task run is set to succeeded/failed state.

2.1.4 Logger

Input requests

Input requests are logged automatically with security.middleware.LogMiddleware. The middleware cre-
ates security.models.InputLoggedRequest object before sending request to next middleware. Response
data to the logged requests are completed in the end. You can found logged request in the Django request objects with
that way request . input_logged_request.

10 Chapter 2. Documentation

django-security-logger Documentation, Release 1.4

View decorators

There are several decorators for views and generic views that can be used for view logging configuration:

* security.decorators.hide_request_body - decorator for view that removes request body from
logged request

* security.decorators.hide_request_body_all - decorator for generic view class that removes
request body from logged request

* security.decorators.log_exempt - decorator for view that exclude all requests to this view from
logging

* security.decorators.log_exempt_all - decorator for generic view class that exclude all requests
to this view from logging

Output requests

Logging of output requests is a little bit complicated and is related to the way how output requests are performed.
You can enable logging of output requests to stdout via SECURITY_LOG_OUTPUT_REQUESTS (default True)
in following format: "{request_timestamp}" "{response_timestamp}" "{response_time}"
"{http_code}" "{http_host}" "{http_path}" "{http_method}" "{slug}". Security pro-
vides two ways how to log output requests:

requests

The first method is used for logging simple HTTP requests using requests library. The only change necessary is
toimport from security import requests instead of import requests. Same methods (get, post, put,
..) are available as in the requests library. Every method has two extra optional parameters:

* slug - text slug that is stored with the logged request to tag concrete logged value
e related_objects - list or tuple of related objects that will be related with output logged request

Example where user is stored in the related objects and log slug is set to the value ' request ':

from security import requests
from users.models import User

user = User.objects.first()
requests.get ('https:///github.com/druids/"', slug='request', related_objects=[user])

suds

For SOAP based clients there are extensions to the suds library. You must only use security.suds.Client
class without standard suds client or security.suds.SecurityRequestsTransport with standard suds
client object. As init data of security.suds.SecurityRequestsTransport you can send slug and
related_objects. The security.suds.Client has slugand related_objects input parameter:

from security.suds import Client
from users.models import User

user = User.objects.first ()
client = Client ('http://your.service.url, slug='suds', related_objects=[user])

2.1. Content 11

django-security-logger Documentation, Release 1.4

Decorators/context processors

security.decorators.log_with_data - because logged requests are stored in models, they are sub-
ject to rollback, if you are using transactions. To solve this problem you can use this decorator before Django
transaction.atomic decorator. The logs are stored on the end of the transaction (even with raised exception).
Decorator can be nested, logs are saved only with the last decorator. If you want to join a object with output request
log you can use this decorator too. In the example user is logged with output request:

from security.decorators import atomic_log
from security import requests

user = User.objects.first()
with log_with_data(slug='github-request', output_requests_related_objects=[user],
—extra_data={'extra': 'data'}):

requests.get ('https://github.com/druids/")

Sensitive data

Because some sensitive data inside requests and responses should not be stored (for example password, authorization
token, etc.) django-security-logger uses regex to find these cases and replace these values with information
about hidden value. Patterns are set with SECURITY_HIDE_SENSITIVE_DATA_PATTERNS which default setting
is:

SECURITY_HIDE_SENSITIVE_DATA_PATTERNS = {

"BODY': (
r'"password"\sx:\sx" ((2:\\"[[""])*) ",
r'<password> (["<]x)"',
r'password=(["&]*) "',
r'csrfmiddlewaretoken=(["&]*) "',
r'(?i)content-disposition: form-data; name="password"\r\n\r\n.«"',
r'"access_key": "([""]%)",

) s

'"HEADERS': (
r'Authorization',
r'X_Authorization',
r'Cookie',

r'.xtoken.*

) 4
"QUERIES': (

r'.xtoken.x',

) 4

Patterns are split to two groups BODY, HEADERS and QUERIES. There are names of HTTP headers and queries,
whose values will be replaced by the replacement. The search is case insensitive. BODY is a little bit complicated. If
regex groups are used in the pattern only these groups will be replaced with the replacement. If no groups are used,
the whole pattern will be replaced.

Commands log

If you want to log commands you must only modify your mangage . py file:

if name == '__main '

os.environ.setdefault ('DJANGO_SETTINGS_MODULE', 'settings')

(continues on next page)

12 Chapter 2. Documentation

django-security-logger Documentation, Release 1.4

(continued from previous page)

Used function for security to log commands
from security.management import execute_from_command_line

sys.path.append(os.path.join (PROJECT_DIR, 'libs'"))

execute_from_command_line (sys.argv)

If you want to call command from code, you should use security.management.call_command instead of
standard Django call_ command function.

Celery tasks log

If you want to log celery tasks you must install celery library (celery>=5). Then you must use security.task
import LoggedTask as a base class of your celery task, example:

from security.task import LoggedTask

@celery_ app.task(
base=LoggedTask,
bind=True,
name="sum_task"')
def sum_task(self, task_id, a, b):
return a + b

Task result will be automatically logged to the log.

2.1.5 Throttling

In terms of django-security-logger throttling is a process responsible for regulating the rate of incoming
HTTP requests. There are many ways how to restrict number of requests that may depend on a concrete view. The
simplest throttling is to restrict maximum number of request from one IP address per unit of time.

Default configuration

Default throttling configuration is set with SECURITY_DEFAULT_THROTTLING_VALIDATORS_PATH. The
setting contains path to the file with throttling configuration. Default configuration is 'security.
default_validators' and the config file content is:

from .throttling import PerRequestThrottlingValidator

default_validators = (
PerRequestThrottlingValidator (3600, 1000), # 1000 per an hour
PerRequestThrottlingValidator (60, 20), # 20 per an minute

Only backends which support reading (sgl, elasticsearch and testing) can be used with throttling validators.

Validators

There are only three predefined throttling validators:

2.1. Content 13

django-security-logger Documentation, Release 1.4

e security.throttling.validators.PerRequestThrottlingValidator - init parameters are
timeframe throttling timedelta in seconds, throttle_at number of request per one IP address per time-
frame and error message.

e security.throttling.validators.UnsuccessfulloginThrottlingValidator - validator
with same input parameters as PerRequestThrottlingValidator but counts only unsuccessful login

request.

* security.throttling.validators.SuccessfulloginThrottlingValidator - validator
with same input parameters as PerRequestThrottlingValidator but counts only successful login re-
quests.

Custom validator

Creating custom validator is very simple, you only create class with validate method that receives request and if request
must be regulated the method raises security.exception.ThrottlingException:

class CustomValidator:

def validate(self, request):
if should_regulate (request) :
raise ThrottlingException('Your custom message')

Decorators

Because throttling can be different per view, there are decorators for changing default validators for concrete view:

* security.decorators.throttling_exempt () - marks a view function as being exempt from the
throttling protection.

* security.decorators.throttling_exempt_all () - marks a view class as being exempt from the
throttling protection.

* security.decorators.throttling(«validators, keep_default=True) - add throttling
validators for view function. You can remove default throttling validators with set keep_default to the
False value.

* security.decorators.throttling_all (xvalidators, keep_default=True) - add throt-
tling validators for view class. You can remove default throttling validators with set keep_default to the
False value.

View

If security.throttling.exception.ThrottlingException is raised the specific error view is re-
turned. You can change it with only overriding template named 429.html in your templates. With setting
SECURITY_THROTTLING_FAILURE_VIEW you can change view function which default code is:

from django.shortcuts import render
from django.utils.encoding import force_text

def throttling failure_view(request, exception):
response = render (request, '429.html', {'description': force_text (exception) })
response.status_code = 429
return response

14 Chapter 2. Documentation

django-security-logger Documentation, Release 1.4

2.1.6 Extra

Django-security-logger provides extra features to improve your logged data.

security.contrib.reversion_log

If you have installed d jango—reversion it is possible to relate input logged requests with concrete object change.
Firstly you must add extension to your INSTALLED_APPS setting:

INSTALLED_APPS = (

'security.contrib.reversion_log',

For django-reversion version older than 2.x you must add middleware security.contrib.
reversion_log.middleware.RevisionLogMiddleware too:

MIDDLEWARE = (

'django.contrib.auth.middleware.AuthenticationMiddleware',
'security.middleware.LogMiddleware',
'security.contrib.reversion_log.middleware.RevisionLogMiddleware',

Input logged requests and reversion revision objects are related via m2m model security.contrib.
reversion_log.models.InputRequestRevision

security.contrib.debug_toolbar_log

If you are using d jango—-debug-toolbar you can log toolbar results with logged request. You only add extension
to your INSTALLED_APPS setting:

INSTALLED_APPS = (

'security.contrib.reversion_log',

And add security.contrib.debug_toolbar_log.middleware.DebugToolbarLogMiddleware
on the first place:

MIDDLEWARE = (
'security.contrib.debug_toolbar_log.middleware.DebugToolbarLogMiddleware',

Finally you can start log debug toolbar settings with your logged requests by turning on settings:

SECURITY_DEBUG_TOOLBAR = True

Do not forget turn on django DEBUG.

To show results in d jango—1is—core you must set setting:

2.1. Content 15

django-security-logger Documentation, Release 1.4

SECURITY_SHOW_DEBUG_TOOLBAR = True

django-is-core

Backends elasticsearch and sgl provide prepared django-is-core administration. If you are using django-is-
core library you can find admin core classes in: * elasticsearch - security.elasticsearch.is_core.cores

InputRequestLogCore
OutputRequestLogCore
CommandLogCore
CeleryTaskRunLogCore
CeleryTaskInvocationLogCore

sql - security.sql.is_core.cores

InputRequestLogCore

OutputRequestLogCore

CommandLogCore

CeleryTaskRunLogCore

CeleryTaskInvocationLogCore

2.1.7 django-security-logger changelog

1.2.0 - 10/20/2020

purge migrations because of splitting log to the extra database
used new version of generic m2m relation which uses relations without FK

added multiple database router

1.0.6 - 02/06/2020

Added DB index to celery log task name.
Celery log state is field on model now (is not dynamically computed).

Celery log state is set in LoggedTask with methods on_start_task, on_success_task, on_failure_task and
on_retry_task.

Command set_staletasks_to_error_state was replaced with set_celery_task_log_state command.

16

Chapter 2. Documentation

Index

S

SECURITY_APPEND_SLASH, 9

SECURITY_AUTO_GENERATE_TASKS_FOR_DJANGO_COMMANDS,

9
SECURITY_BACKENDS, 9

SECURITY_CELERY_STALE_TASK TIME_LIMIT_MINUTES,

9
SECURITY_COMMAND_LOG_EXCLUDED_COMMANDS,

9
SECURITY_DEFAULT_ THROTTLING_VALIDATORS_PATH,

8
SECURITY_ELASTICSEARCH_AUTO_REFRESH, 10
SECURITY_ELASTICSEARCH_DATABASE, 10
SECURITY_HIDE_SENSITIVE_DATA, 9
SECURITY_HIDE_SENSITIVE_DATA_PATTERNS,

9
SECURITY_LOG_DB_NAME, 9
SECURITY_LOG_JSON_STRING_LENGTH, 9
SECURITY_LOG_OUTPUT_REQUESTS, 9
SECURITY_LOG_REQUEST_BODY_LENGTH, 9
SECURITY_LOG_REQUEST_ IGNORE_IP,9
SECURITY_LOG_REQUEST_IGNORE_URI_PATHS,

9
SECURITY_LOG_RESPONSE_BODY_CONTENT_TYPES

9
SECURITY_LOG_RESPONSE_BODY_LENGTH, 9
SECURITY_LOG_STRING_IO_FLUSH_TIMEOUT,

10
SECURITY_LOG_STRING_OUTPUT_TRUNCATE_LENGTH,

10
SECURITY_LOG_STRING_OUTPUT_TRUNCATE_OFFSET,

10
SECURITY_SENSITIVE_DATA_ REPLACEMENT, 9
SECURITY_THROTTLING_FAILURE_VIEW, 9

17

	Project Home
	Documentation
	Content

	Index

